Territorial contestation and repressive violence in civil war

J. M. Quinn

Kroc Institute for International Peace Studies, University of Notre Dame, Notre Dame, IN, USA

Published online: 16 Jun 2014.

To cite this article: J. M. Quinn (2014): Territorial contestation and repressive violence in civil war, Defence and Peace Economics, DOI: 10.1080/10242694.2014.925677

To link to this article: http://dx.doi.org/10.1080/10242694.2014.925677

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
TERRITORIAL CONTESTATION AND REPRESSIVE VIOLENCE IN CIVIL WAR

J. M. QUINN*

Kroc Institute for International Peace Studies, University of Notre Dame, Notre Dame, IN, USA

(Received 11 February 2013; in final form 10 February 2014)

This study models the structural sources of variation in the use of selective (discriminate) repression within 89 civil wars fought between 1981 and 2005. The severity of repressive violence is modeled as a function of the amount of territory being contested by the insurgents. This idea is operationalized using measures of the location, size, and density of insurgency violence. The analysis finds evidence that the repressive behavior of both governments and rebel groups is linked to conflict geography. Governments violate physical integrity rights more frequently and kill more civilians the greater the overall amount of territory under contestation. Rebels kill more civilians in highly dispersed insurgencies that lack a clear epicenter.

Keywords: Territorial contestation; Conflict geography; State repression; Repressive violence; Counterinsurgency; Terrorism; Civil war; Human rights; Territorial control

INTRODUCTION

Civil war is an aggregate outcome of different forms of political violence. This article focuses on the structural sources of variation in the use of selective or discriminate repressive violence against civilians or noncombatants inside civil war settings. Repression is defined as the use of physical violence against an individual or group based on their suspected involvement in providing support to the rival civil war actor, with the purpose of stopping and deterring such behavior in the future, and gathering intelligence regarding new suspects. Its most distinguishing characteristic is that it is aimed at individuals who are in a noncombat role at the time they are targeted.

Traditionally, repression studies have focused on how governments respond to dissent activity using state-level characteristics on a pooled sample of country years – some years housing civil wars with the bulk of years coming from non-civil war settings (e.g. Poe and Tate 1994; McCormick and Mitchell 1997; Regan and Henderson 2002; Davenport and Armstrong 2004). Country-level repression studies, which include a marker for civil war in their respective analyses, find repressive violence clustered very tightly to civil war prevalence. Poe and Tate (1994) and Davenport and Armstrong (2004) found ‘civil war’ to be the single strongest independent variable in their models of physical integrity violations.

*Kroc Institute for International Peace Studies, University of Notre Dame, 100 Hesburgh Center for International Studies, Office 330, Notre Dame, IN 46556-5677, USA. E-mail: Jquinn12@nd.edu

© 2014 Taylor & Francis
using the Political Terror Scale. Eck and Hultman (2007) found ‘civil war’ prevalence to be the single strongest predictor of one-sided killing of civilians. Krain (1997, 347) found that the onset of state sponsored genocides was best explained by ‘civil war.’ Abouharb and Cingranelli (2006) found ‘civil conflict’ prevalence to be the second strongest predictor of physical integrity violations using the CIRI physical integrity index (physint).¹

The fact that repressive violence is so tightly clustered, temporally and spatially, around ongoing civil wars demonstrates the limits of analyses that compare entire national territories to one another when civil wars take place at particular times, and at particular locations, within those nations. Following recent trends in the literature on geography and civil war dynamics, this article examines repressive violence within a sample of 89 civil wars fought between 1981 and 2005 using conflict-level indicators. Drawing from Kalyvas’s (2006) theory of violence against civilians in civil war, the general expectation that guides the article is that larger amounts of contested territory should be associated with greater levels of repressive violence. A statistical analysis of several different measures of repression finds evidence that the amount of overall territory being contested by the insurgents and the density of insurgency violence are significant predictors of physical integrity violations and one-sided killing of civilians inside civil war.

The remainder of the paper is organized as follows. The next section contains an overview of studies that have used conflict geography and geo-referenced indicators to examine civil war dynamics and situates the current analysis. Then I draw from Kalyvas’ theory on the fragmentation of territorial control and repressive violence in civil war to derive several hypotheses regarding the effects of territorial contestation on several different indicators of repressive violence. After the statistical analysis, I conclude with a summary of the major findings and some implications for future research on this topic.

Prior Research on Conflict Geography and Civil War Violence

The importance of geography and spatial analyses to the study of civil war is becoming firmly established as the number of studies that employ these types of data and methods increase in number and scope. Because civil wars are fundamentally fought over territory and the loyalty of civilian populations residing on territory, geography influences both the type of incompatibility that develops, how political violence is distributed across space, and the military strategies of the respective organizations (Buhaug and Gates 2002; Buhaug and Rod 2006; Kalyvas 2006; Raleigh and Hegre 2009; Do and Iyer 2010; Korf 2011; Raleigh 2011; Schutte and Weidmann 2011).

Location, as it relates to political geography, assists rebel groups in evading government troops by providing nearby borders (Salehyan 2009). Location, as it relates to physical geography, provides sanctuaries that are difficult to reach where rebels can hide, strategize, and recover. Research has shown that groups that are more optimally located may be more inclined to initiate a challenge against the state. Buhaug, Gates, and Lujala (2009) and Rustad et al. (2011) find that conflicts last longer when they are fought farther away from the government’s stronghold of power, which suggests that distant insurgencies are either easier to ignore or more difficult to defeat. The geographic location of a group can also be a source of grievances as ethnic groups will naturally evaluate their ‘situation’ through

¹Using the CIRI Human Rights Data Project’s physint index (Cingranelli and Richards 1999), I calculated that over 90% of all country years coded as having the maximum number of physical integrity violations fall between the dates of onset and termination of a major civil war in Sambanis (2004). If the UCDP threshold of 25 or more annual battle-deaths is used, the percentage is over 95%. Hence, harsh repression outside of civil war is almost a nonentity according to existing measures.
comparisons with other groups in other areas. Cederman, Weidmann, and Gleditsch (2011) find conflict more likely to emerge when an ethnic group is located in a geographic area with incomes below the national average. Hegre et al. (2009) and Buhaug, Gates, and Lujala (2009) and Buhaug et al. (2011) find that civil conflicts tend to originate from relatively poorer areas within a state’s overall national territory.

Like organized criminal violence, political violence has strong ‘neighborhood effects’ where location and population density structure perpetrator/victim and recruiter/recruit interactions. Neighborhoods serve as the repositories of the kinds of skill sets and traumatic exposure events that are requisites for organized killing. Daly (2012) finds a history of violence to be the strongest predictor of future violence within a given municipality in Colombia. In Ireland, Hart (1997, 1999) found that contemporaneous political violence correlated with a long history of activism and the presence of local recruiters within the same communities, same neighborhoods, and same families, dating back decades. Toft (2006) finds that territorially concentrated ethnic groups within nations are more conflict-prone that dispersed groups. Lilja and Hultman (2011) found that the LTTE used violence against Tamil civilians in areas that were more ethnically heterogeneous or ethnically mixed. Weidmann (2009) finds that the density of ethnic group population clusters increases their risk of participation in armed conflict. These studies suggest that proximity provides insurgents an organizational edge in mobilizing for collective action, presumably by reducing the costs of communicating and compliance easier to monitor and punish.

More recently, scholars have begun to study how locations or patterns of violence change or remain constant over time within the larger geographical scope of a civil war (Benini and Moulton 2004; Buhaug and Rød 2006; Townsley, Johnson, and Ratcliffe 2008; Raleigh and Hegre 2009; Weidmann and Ward 2010; Schutte and Weidmann 2011; O’Loughlin, Holland, and Witmer 2012). Most of these studies recognize contemporaneous correlations between violent acts or between locations; only a few studies have focused on prior locations and subsequent locations of violent activity. Schutte and Weidmann (2011) examine the diffusion of violence in Bosnia, Kosovo, Burundi and Rwanda and find that the spread of violence from one location to another proximate location is more frequent than relocation, the movement of violent activity from one location to another location. O’Loughlin, Holland, and Witmer (2012) find both expansion and relocation in their study of 14,000 geo-coded violent events in the Chechnya civil war. Using statistical techniques for identifying density strength and measuring space–time interactions, they found that violent events clustered around certain roads and expanded to points of higher density in towns with a history of previous attacks. The authors found a consistent temporal pattern of rebel offenses being followed by government crackdowns with associated violence and mass arrests by Russian military and police. They found statistically significant clustering through the second year of the Chechnya conflict, followed by three years of de-clustering or spatial fragmentation. Interestingly, in the fifth year, significant clustering was once again observed, but this time in the mountainous regions in the south.

Missing from this review of the conflict geography literature are studies that examine the relationship between territorial contestation and repressive violence against civilians in civil war. Prominent qualitative studies on repressive violence have emphasized the centrality of territorial contestation to the study of repressive violence in civil war contexts. In his classic study of insurgencies across Latin America, Wickham-Crowley (1990, 225) argued that the degree of territorial overlap between the conflict actors was the primary structural source of variation in repressive violence or ‘terror’ across the cases he studied,
Terror is particularly common in guerrilla warfare because there is an aggregation and mixture of combatant, noncombatant, and support system into a very small social and geographical space. The nature of the support system ... consists in large part ... of the peasantry itself. Whether the peasantry acts willingly or not, there is often a very deep social and geographical overlap in guerrilla warfare between the support system (the source of military intelligence, food, supplies, and recruits) and the civilian population, with a large overlap between the civilian population and the combatants as well.

Wickham-Crowley (1990, 226–230) emphasized two factors in particular: the depth of ‘system overlap’ between government troops, the guerrillas, and civilians in their operations and a ‘lack of information on the part of government soldiers necessary to sort out these categories’ (i.e. the identification problem).

The most detailed theoretical work to date on the topic of repressive violence and territory in civil war is Kalyvas’ (2006) The Logic of Violence in Civil War. In it, Kalyvas (2006, 19) puts forth a theory of selective violence against ‘noncombatants or civilians’ as a joint process resulting ‘from the convergence of two distinct but related processes: the political actors’ attempts to deter individual defection, and individuals’ decision to provide information to political actors’ (173). The centrifugal force of Kalyvas’ multi-layered argument is ‘territorial control’ and how it relates to gaining and maintaining ‘civilian collaboration’. According to Kalyvas (2006, 12),

Political actors maximize territorial control subject to the local military balance of power; territorial control in the context of irregular war requires the exclusive collaboration of individual civilians who, in turn, maximize various benefits subject to survival constraints. Irrespective of their sympathies ... most people prefer to collaborate with the political actor that best guarantees their survival rather than defect by helping the rival actor.

In Kalyvas’ view, most residents wish to be left alone and will choose the path of least resistance, thereby cooperating with whichever side they feel best controls the area in which they happen to live and work. In doing so, they will avoid repression from the locally dominant actor by complying and at the same time gain some level of protection from the outside rival actor.

Variation in repressive violence across different locations, according to Kalyvas (2006, 12), stems from the

twin processes of segmentation and fragmentation of sovereignty: territory is divided into zones monopolistically controlled by rival actors (segmentation) and zones where these actors’ sovereignty overlaps (fragmentation). The type of sovereignty or control that prevails in a given region affects the type of strategies followed by political actors. Political actors try to shape popular support (or collaboration) and deter collaboration with their rival (or defection).

In Kalyvas’ argument, territorial control leads to civilian collaboration, which in turn consolidates territorial control and variation in repressive violence depends on the type of control that ‘prevails in a given region.’ Kalyvas predicts lower levels of repressive violence against civilians where the prevailing pattern is segmentation, that is, where each actor has a high level of control in its stronghold or dominant locale and little control outside it. Segmentation reduces repression because ‘political actors do not need to use violence where they already enjoy high levels of control and cannot use selective violence where they have no control whatsoever; having no access to information’ (2006, 12). Instead, repressive violence is used ‘in contested areas, where they have incomplete control’ (12–13). Within these contested areas, the use of repressive violence ‘reflects the strategic interaction of at least two actors that are simultaneously present on the same territory’ (31).
As a test of his theory of territorial contestation and repressive violence, Kalyvas (2006) performs a micro-quantitative study on the Greek civil war and the results suggest a high level of internal validity. For external validity, he provides an abundance of comparative evidence from numerous civil conflicts. The current paper explores the relationship between the amount of territorial contestation and repressive violence across a large-N sample of civil wars. Drawing from Kalyvas’ general framework on segmentation and fragmentation, I put forth in the next section several testable hypotheses regarding the amount of territory being contested by the rebel group.

Measuring Territorial Contestation: The Location, Size, and Density of Insurgencies

As previously noted, prominent works have argued that the amount of overlap of territorial control between rival actors in civil wars is a main source of variation in repressive violence. Because the level of control that a government exerts over its national territory is not geographically uniform, the amount of contested territory or overlapping territorial control that is possible in a civil war should depend on the location of the rebel stronghold vis-à-vis the government stronghold. Presumably, governments are strongest and have the most territorial control in and around the geographic area where the government’s leaders live and work (i.e. the capital city) and this level of strength and control diminishes with linear distance from that location (Boulding 1962; Buhaug and Gates 2002; Buhaug 2007).

Out of a finite military budget, government leaders will devote an adequate amount of spending to protecting their lives with the remainder – adequate or inadequate – spread out over the remainder of the national territory.

If the sphere of government territorial control is greatest around the capital and the sphere of rebel territorial control is greatest around their base, then the juxtaposition of the rebel base to the capital city should produce a spectrum of territorial control with extreme segmentation at one end and extreme fragmentation at the other. Rebel bases located in far away, distant, remote areas should result in a prevailing pattern of segmentation because rebel control is highest in the precise geographical location where government control is lowest. Vice versa, a rebel base located within the government’s sphere of control should produce large amounts of fragmentation. This proximity and overlap will intensify competition for resources, exacerbate the identification problem in counterinsurgency, and maximize the ecology of denunciation and defection (Kalyvas 2006). Thus, I propose the following expectation:

Hypothesis 1: Shorter geographical distances between rebel and government strongholds should lead to larger amounts of contested territorial control resulting in greater levels of repressive violence.

An objection might be that similar patterns of territorial contestation in different locations could produce different outcomes with regard to the use of repressive violence by actors in those locations. Instead of greater fragmentation leading to greater repressive violence, the relationship could be nonmonotonic in some places or effect different actors in the same location differently. For example, Kalyvas adds that a parity of control in a location is possible and that parity may produce low levels of violence because of the increased risk of getting caught or punished for denouncing/defecting. But the fact that parity may occasionally occur and lead to a stalemate of sorts is not at all inconsistent with the larger argument that conflict geography ‘sets the stage’ for what type of territorial pattern will prevail in the war. If we imagine the rebel base and capital city as two circles sliding along a continuum of territorial control, it seems reasonable that the aggregate number of
fragmented sites, and hence the aggregate amount of fragmented territory, will increase as
the overlap of the two circles increases. In contrast, a parity of control in one or more loca-
tions results from local motivations that determine the balance of power. As a result, parity
should be both temporary and far less frequent than situations where one side or the other
has some advantage.

The size of the conflict zone

While conflict location is theorized as impacting the potential for what pattern of territorial
control will likely unfold, the overall size or scope of a conflict should be coterminous with
the amount of contested territory plus or minus some amount of error. Buhaug and Gates
(2002) have compiled geographical data on the size and scope of the combat zone for most
civil wars. Using the rebel base area as a center point, they measure a conflict zone as the
geographic area that extends from the rebel base to the farthest known areas of combat. The
borders of the conflict zone are the farthest known battlefield sites from the rebel’s base
area. Because the size of the conflict zone reflects the actual positions taken by the rebels
and the government throughout the country, it is the best indicator that is currently available
of the parameters of contestation in civil war.

A large conflict zone is not only indicative of a rebel presence in extended areas of the
country, far from their base, but also means that the government has a presence in those
areas as well and is actively challenging the rebels militarily. The importance of this level
of actor interdependence in the measure cannot be overstated. The borders of the conflict
zone represent, in my view, how territorially ambitious the rebels are, and where the gov-
ernment has drawn its final lines of defense. Smaller conflict zones, in comparison, suggest
a dominant pattern of segmented territorial control in the country where battlefield sites are
closer to the rebel epicenter and the bulk of the nation is under incumbent control. Thus, I
propose the following expectation:

Hypothesis 2: Larger conflict zones should be indicative of larger amounts of contested territory resulting in
greater levels of repressive violence.

A possible objection to using the size of the conflict zone to measure the amount of
contested territory is that within the conflict zone itself, territorial control can take on any
assortment of ‘patchwork’ variegation (in the next section, I cover the density of insurgency
violence). Certainly a conflict zone will contain an assortment of different kinds of control,
but the larger point is that all of the area outside the conflict zone is under incumbent con-
tr ole. Only within the boundaries of the conflict zone, is territory in play, that is, falling
under one of three possible types of control: incumbent, insurgent, or contested. I expect
that larger conflict zones should produce a greater aggregate number of contested sites that
produce a demand for repressive violence. Put differently, the size of the conflict zone in
each conflict is a measure of the population parameter for the number of fragmented local
sites. We do not know how many fragmented sites there are in a civil war, but we do know
the parameters of that population.

The density of insurgency activity

Just as most of the violence in a civil war can be captured in a conflict zone that is smaller
than the country is as a whole, most of the violence within a conflict zone can be similarly
localized. Conflicts of similar parameter size often contain very different densities in terms
of where insurgency activity takes place within the larger boundaries of contestation. As illustrated by the Moscow bombings in the Chechnya civil war, rebels can attack government targets at great distances with some regularity, while the majority of violence takes place closer to home. Insurgencies can also have similar levels of aggregate insurgency violence, with very different densities. For example, in El Salvador in 1982, there were 540 insurgency attacks across 240 different townships with San Salvador housing the most attacks at 20% of the total. By contrast, Pakistan experienced 519 insurgency attacks in 63 cities in 1995, with Karachi housing 437 attacks, or 84% of the total.\footnote{Based on calculations by the author for the number of attacks per year and the number of cities housing attacks per year using event data from the Global Terrorism Database (LaFree and Dugan 2008).}

In accordance with the proposed framework, there are several reasons why concentrated or high-density insurgencies should produce less repressive violence against civilians. These reasons are rooted in how density influences targeting probabilities, achieving effective deterrence, and the supply of denunciations. First, the ability of soldiers to target only active rival combatants is related to the density of insurgency activity. Because the main distinction between repressive violence and combat violence is whether the targets are predominantly combatants or predominantly noncombatants, the ratio of combatant to noncombatant in an area is a key condition. Often soldiers cast the same size net of violence upon geographic areas with very different combatant-to-noncombatant densities which translates into higher victimization rates for noncombatants (Mason 1989; Azam and Hoefler 2002; Valentino, Huth, and Balch-Lindsay 2004).

Valentino, Huth, and Balch-Lindsay (2004) found that civilian killings were more common in conflicts that were characterized by ‘guerrilla warfare’ and the use of evasive hit and run tactics, and less common in conflicts fought along more conventional lines of defending held territory. Similarly, Balcells (2010, 292) argues that the different ways in which civil wars are fought explain much of the variation in civilian targeting:

One of the main differences between conventional civil wars and irregular or guerrilla wars is that, except for zones that are extremely close to the frontline, the control of the armed groups over the population under their dominion is overwhelming; in irregular civil wars this is not the case, as areas of total control coexist with areas of fragmented control where this must be ‘shared’ with the rival. This implies that, in guerrilla wars, violence against civilians is largely the result of warfare and the competition to gain territory.

Military engagements in dispersed or low-density insurgencies should be less conventional than in high-density insurgencies which have more segmented lines of territorial control. Within a sample of civil wars, some have more conventional military engagements while others have mostly nonconventional fighting, and the density of the insurgency should be the mediating factor over what type of warfare prevails (Azam and Hoefler 2002).

On the supply side of the denunciation equation, insurgencies that are more dispersed or spread out should produce more denunciations (i.e. targets) from informants living in and monitoring areas of fragmented loyalties. Low-density, highly dispersed insurgencies should also produce more erroneous or inaccurate denunciations due simply to the larger margin for possible error. Also effective deterrence should be harder for each side to achieve dispersed insurgencies as crowding effects diminish the probability that any one person’s misbehavior will be discovered (Mason 1996). In concentrated insurgencies, compliance and deterrence are easier to achieve which means fewer targets. Defection in general to the other side should be lower in concentrated insurgencies where the insurgents themselves and their pool of supporters tend to be segregated for the most part from surrounding populations. Thus, I propose the following expectation:
Hypothesis 3: More geographically dispersed insurgencies should be indicative of larger amounts of contested territorial control resulting in greater levels of repressive violence.

Research design and data

To assess the factors associated with variation in state repressive violence both within civil wars and across civil wars, a cross-sectional, time-series data-set was assembled with annual observations for 89 major civil wars fought between 1981 and 2005 using Sambanis’ civil war data-set (2004). Several different dependent variables are used in the analysis to measure the type and severity of repressive violence within civil war. For each different dependent variable, three models were estimated all containing the same independent variables. In all models, standard errors are clustered on conflict. First, each measure of repression is estimated with an OLS regression which pools together the observations from each panel (which are treated as independent). Second, the OLS regression is re-estimated with all variables calculated at their mean values in order to examine between-group variation. This is also done because two of the three main independent variables – Conflict Location and Conflict Size – do not vary within the panel which artificially shrinks standard errors. Third, I estimate a fixed effects regression on each dependent variable to examine the effects of the independent variables on within-group variation over time. This model includes Conflict Density which is time-varying within each panel.

Models 1–3 examine the nine-point physical integrity index (Physint) taken from the CIRI Human Rights Data Project (Cingranelli and Richards 1999). The index is a measure of the frequency of political imprisonment, torture, extrajudicial killings, and disappearances. For this paper, the original scale was reversed so that higher values reflect higher levels of repression.

Models 4–6 examine One-sided Killing of Civilians (OSK) by the government each year, taken from Eck and Hultman (2007). This data does not begin until 1989 which reduces the number of observations in these models. Models 7–9 examine the same measure – One-sided Killing of Civilians (OSK) – perpetrated by the rebel group rather than the government.

Models 10–12 examine Genocide (Harff 2003), and Models 13–15 examine Battle-Deaths (Lacina and Gleditsch 2005) in an effort to draw some distinctions across the different types of violence that make up civil war. While territory figures prominently in the literature on repressive violence against noncombatants, the literature on battle-deaths does not emphasize territorial control or geography. The literature on genocide makes almost no mention of conflict geography as being a relevant factor. In fact, Kalyvas makes a point of mentioning that his theory does not apply to genocide: ‘genocide is neither mere continuation of severe repression through other means nor just mass killing, but a phenomenon of an altogether different kind’ (Kalyvas 2006, 30).

Independent variables: territorial contestation

Conflict location. This variable is a measure of the distance in kilometers (logged) between the primary rebel base area and the capital city of the state, taken from Buhaug and Gates (2002).

3Ethnic fractionalization was dropped in several models by STATA due to collinearity.
4Their ‘best estimate’ measure was used.
Conflict size. Buhaug and Gates (2002) measure the radius of a conflict zone as the distance from the rebel base area (center point) to the farthest known battlefield sites to generate a polynomial of the size of the conflict zone (3.14*r*r). The variable Conflict Size is a proportional variable of the size of the conflict zone as a percentage of the state’s overall territory.

Conflict density. The variable Conflict Density is the percentage of insurgency attacks that took place in the ‘dominant insurgency locale’ each year. The dominant insurgency locale is defined as the township with the most attacks in the calendar year using event data from the Global Terrorism Database (LaFree and Dugan 2008). I included only insurgency attacks where the rebel group was either identified or the attack took place in the same town as many prior attacks where the rebel group was identified. To calculate the density of insurgency activity for every year, two streams of information were used: (1) the total number of attacks that took place in the year and (2) the number of attacks that took place in the dominant insurgency locale. Dividing the number of attacks that took place in the dominant insurgency locale by the total number of attacks that took in the year provides an intuitive measure of an insurgency’s density with practical counterinsurgency utility. Presumably, the area with the majority of attacks will be the location where the government focuses most of its counterinsurgency efforts.

Control variables: country level

State strength. This is an ordinal variable taken from Cunningham, Gleditsch, and Salehyan’s data on rebel groups that measures the relative strength of the government compared to the rebel group that takes into account: military capabilities, troop levels, external support, control of territory, and organizational cohesion (see Heger and Salehyan 2007). I reversed their original variable so that higher numbers means the government is stronger relative to the rebel group (1 = state much weaker, 2 = weaker, 3 = parity, 4 = stronger, and 5 = state much stronger).

Ethnic fractionalization. Identity is a determinative force in a state’s ability to achieve control throughout its territory (Migdal 1988). I control for the level of ethnic fractionalization using the measure from Alesina et al. (2003). The variable ranges from 0 to 100 indicating the demographic probability that two randomly selected people would be from two different ethnic groups.

Mountainous. Spatial dynamics in civil war should also be impacted by geographic factors like the ruggedness of the state’s terrain. The variable Mountainous is the percentage of the state that is covered in mountains taken from Buhaug and Gates (2002).

Marginalized. Recent studies have found that higher degrees of ethnic marginalization from governmental power put a state at a higher risk of experiencing civil conflict and increase the severity of conflict should it occur (Cederman and Girardin 2007; Fearon, Kasara, and Laitin 2007; Heger and Salehyan 2007). The variable Marginalized was coded from Fearon, Kasara, and Laitin 2007 and measures the percentage of the population that shares the same ethnicity as the head of state. A higher number indicates ethnic majority rule.

5 Although they argued that the impact of minority rule on civil war onset was being overstated by Cederman and Girardin (2007), Fearon, Kasara, and Laitin’s (2007) analysis of 160 countries from 1945 to 1999 found that ethnic minority rule increased the odds of civil war about 2.75 times for each year continued under minority rule.
Democracy. The level of democracy in the civil war state is measured using the 21-point Polity IV index (Marshall and Jaggers 2007).

Income per capita. Income per capita taken from the World Development Indicators (World Bank).

Conflict level
Battle-deaths. Lacina and Gleditsch (2005, 148) argue that battle-deaths, as an indicator, is ‘the best measure of the scale, scope, and nature of the military engagement that has taken place … and how frequently and widely they engage each other.’ The variable Battle-Deaths records the number of fatalities (in the thousands) resulting from combat each year. For those years where a state had battle-deaths from multiple conflicts, I took the sum of all deaths.

Ethnic division. This variable indicates whether the primary cleavage between the combatants was ideological or ethnic, derived from Sambanis (2001). Aside from Ethnic Division, I do not control for conflict type because it is highly correlated with the geography variables. Buhaug, Gates, and Lujala (2009) also do not include conflict type in their models that include conflict geography variables arguing that ‘it would be a mistake to control for conflict type in this case, since the strategic objective of the rebels is in part a function of location and relative strength.’

Duration. The variable War Duration is a continuous count of how many years a state has spent in civil war. The measure includes years spent in civil war before the analysis begins.

Conflict dyads. The variable Conflict Dyads measures how many major civil wars are ongoing each year according to Sambanis (2004). Of the 658 country years spent inside a major civil war between 1981 and 2005, there are 69 years in the sample where a state fought more than one major civil war in the same year (Table 1).6

RESULTS

Table II displays the results from 15 regression models carried out on three measures of repression and two other forms of civil war violence. The dependent variable in the first three models is the CIRI Physint index. Across the three models, we see that the coefficients on the three conflict geography indicators run in the hypothesized direction and two of the three are robust to different specifications. In Model 1, Conflict Location is marginally significant and the coefficient suggests a decreased slope of −0.131 in state repression moving from a conflict where the rebel base is relatively close to the capital city (e.g. Nicaragua, Tajikistan) to a conflict where the rebels are relatively remote (e.g. Morocco, Nigeria, Papua New Guinea). In Models 1 and 2, Conflict Size is positively and significantly

6For those 69 years, I calculated the average measure for conflict-specific variables (i.e. the average distance between rebel bases, the average conflict zone size, and the average density). In a robustness test, I dropped these years and it did not change the overall results (not shown).
associated with higher levels of repression of physical integrity rights. Civil wars where the
conflict zone encompasses the majority of the state’s physical territory (e.g. Nepal, Sri
Lanka, Peru) had repression scores 0.597 points higher than countries with more regional-
ized conflict (e.g. Bangladesh, Nigeria, Kenya). The most significant territorial variable in
predicting the harshness of state repression in civil war is Conflict Density. High-density
insurgencies had repression scores over one point lower than insurgencies where attacks
were spread out amongst numerous locations. Model 2 is a cross-sectional OLS regression
with all variables set at their mean values. Conflict Location, which was marginally signifi-
cant in Model 1, does not reach statistical significance when examining between-group vari-
ation. However, Conflict Size and Conflict Density remain highly influential in Model 2.
Taken together, the coefficients for Conflict Size and Conflict Density in Model 2 account
for roughly 2.5 points on the nine-point Physint index, or roughly 27%.

Model 3 is a fixed effects model of Conflict Density, which co-varies annually according
to the percentage of insurgency attacks that took place in the dominant insurgency locale,
dropping the other static measures. As in the previous two models, Conflict Density is
highly significant, lending strong support to the view that governments engage in higher
levels of repression in insurgencies that are more decentralized.

Taken as a whole, the results suggest that governments, on average, are more repressive
in civil wars that are larger in terms of the amount of territory under contestation, and lack
a clear epicenter of insurgency activity. The consistently strong results for Conflict Density
suggest that governments either increase repression in response to geographically dispersing
or expanding insurgencies, or higher levels of government repression lead insurgents to dis-
perse or flee to other areas. Cases of highly dispersed, decentralized, insurgencies being
associated with gross human rights violations are much more common than the inverse.
The Nicaraguan civil war, for example, became so highly dispersed that no more than three
percent of attacks took place in any one location. The Peruvian civil war started out highly
concentrated but ended highly dispersed. In 1984, Sendero conducted 548 attacks in 273
different townships, with Lima, the dominant insurgency locale that year, housing only

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRI physint index</td>
<td>595</td>
<td>6.132</td>
<td>1.676</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>One-sided killings by gov</td>
<td>428</td>
<td>139.26</td>
<td>605.89</td>
<td>0</td>
<td>8541</td>
</tr>
<tr>
<td>One-sided killings by rebels</td>
<td>429</td>
<td>80.54</td>
<td>171.5</td>
<td>0</td>
<td>1132</td>
</tr>
<tr>
<td>Genocide</td>
<td>658</td>
<td>0.189</td>
<td>0.392</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Battle-deaths</td>
<td>658</td>
<td>3.748</td>
<td>7.910</td>
<td>0.01</td>
<td>80</td>
</tr>
<tr>
<td>Conflict location</td>
<td>658</td>
<td>5.480</td>
<td>1.373</td>
<td>0</td>
<td>7.670</td>
</tr>
<tr>
<td>Conflict size</td>
<td>658</td>
<td>0.678</td>
<td>0.376</td>
<td>0.001</td>
<td>1</td>
</tr>
<tr>
<td>Conflict density</td>
<td>561</td>
<td>0.391</td>
<td>0.270</td>
<td>0.022</td>
<td>1</td>
</tr>
<tr>
<td>State strength</td>
<td>658</td>
<td>3.191</td>
<td>0.760</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Ethnic fractionalization</td>
<td>658</td>
<td>0.549</td>
<td>0.243</td>
<td>0.008</td>
<td>0.93</td>
</tr>
<tr>
<td>Marginalized</td>
<td>658</td>
<td>0.544</td>
<td>0.286</td>
<td>0.04</td>
<td>0.98</td>
</tr>
<tr>
<td>Ethnic divide</td>
<td>658</td>
<td>0.670</td>
<td>0.470</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Conflict dyads</td>
<td>658</td>
<td>1.150</td>
<td>0.481</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Duration</td>
<td>658</td>
<td>8.697</td>
<td>7.254</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>Income per capita (ln)</td>
<td>657</td>
<td>6.347</td>
<td>1.187</td>
<td>3.782</td>
<td>9.916</td>
</tr>
<tr>
<td>Population</td>
<td>658</td>
<td>0.105</td>
<td>0.140</td>
<td>0.001</td>
<td>0.858</td>
</tr>
<tr>
<td>Democracy</td>
<td>658</td>
<td>10.799</td>
<td>6.077</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Mountainous</td>
<td>658</td>
<td>23.057</td>
<td>24.175</td>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td>Variable</td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 3</td>
<td>Model 4</td>
<td>Model 5</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Physint</td>
<td>Physint</td>
<td>Physint</td>
<td>Gov Osk</td>
<td>Gov Osk</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>OLS</td>
<td>fixed effects</td>
<td>OLS</td>
<td>means</td>
</tr>
<tr>
<td>Conflict location</td>
<td>−0.131</td>
<td>−0.067</td>
<td>−18.68</td>
<td>−17.83</td>
<td>−10.36</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.108)</td>
<td>(16.37)</td>
<td>(27.54)</td>
<td>(9.287)</td>
</tr>
<tr>
<td>Conflict size</td>
<td>0.597**</td>
<td>0.942**</td>
<td>238.8**</td>
<td>511.9*</td>
<td>61.19**</td>
</tr>
<tr>
<td></td>
<td>(0.339)</td>
<td>(0.460)</td>
<td>(103.3)</td>
<td>(359.1)</td>
<td>(36.80)</td>
</tr>
<tr>
<td>Conflict density</td>
<td>−1.075***</td>
<td>−1.522***</td>
<td>−0.948***</td>
<td>116.9</td>
<td>322.2</td>
</tr>
<tr>
<td></td>
<td>(0.362)</td>
<td>(0.659)</td>
<td>(0.310)</td>
<td>(161.5)</td>
<td>(273.1)</td>
</tr>
<tr>
<td>Mountainous</td>
<td>0.111***</td>
<td>0.012**</td>
<td>−0.009**</td>
<td>1.109</td>
<td>0.412</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.0052)</td>
<td>(0.003)</td>
<td>(1.059)</td>
<td>(2.553)</td>
</tr>
<tr>
<td>State strength</td>
<td>0.192</td>
<td>0.139</td>
<td>2.631****</td>
<td>−59.25</td>
<td>−145.2*</td>
</tr>
<tr>
<td></td>
<td>(0.155)</td>
<td>(0.207)</td>
<td>(0.201)</td>
<td>(41.02)</td>
<td>(85.15)</td>
</tr>
<tr>
<td>Ethnic conflict</td>
<td>−0.110</td>
<td>−0.272</td>
<td>−0.595</td>
<td>105.5***</td>
<td>160.1</td>
</tr>
<tr>
<td></td>
<td>(0.267)</td>
<td>(0.325)</td>
<td>(0.510)</td>
<td>(59.49)</td>
<td>(134.8)</td>
</tr>
<tr>
<td># of dyads</td>
<td>0.519***</td>
<td>0.270</td>
<td>0.274</td>
<td>−34.64</td>
<td>−86.91</td>
</tr>
<tr>
<td></td>
<td>(0.178)</td>
<td>(0.290)</td>
<td>(0.408)</td>
<td>(52.11)</td>
<td>(138.9)</td>
</tr>
<tr>
<td>War duration</td>
<td>−0.014</td>
<td>−0.0320</td>
<td>−0.083**</td>
<td>−8.014***</td>
<td>−14.60</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.0244)</td>
<td>(0.024)</td>
<td>(3.280)</td>
<td>(11.67)</td>
</tr>
<tr>
<td>Battle-deaths (k)</td>
<td>0.042***</td>
<td>0.0376*</td>
<td>0.024</td>
<td>11.37**</td>
<td>−2.027</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.021)</td>
<td>(0.013)</td>
<td>(5.359)</td>
<td>(13.07)</td>
</tr>
<tr>
<td>Marginalized</td>
<td>0.064</td>
<td>0.541</td>
<td>−1.623****</td>
<td>118.8</td>
<td>464.0</td>
</tr>
<tr>
<td></td>
<td>(0.477)</td>
<td>(0.563)</td>
<td>(0.286)</td>
<td>(110.6)</td>
<td>(324.6)</td>
</tr>
<tr>
<td>Ethnic fract.</td>
<td>0.429</td>
<td>−0.058</td>
<td>Omitted</td>
<td>7.708</td>
<td>−114.9</td>
</tr>
<tr>
<td></td>
<td>(0.673)</td>
<td>(0.690)</td>
<td>−</td>
<td>(99.48)</td>
<td>(242.9)</td>
</tr>
<tr>
<td>Income per capita (ln)</td>
<td>−0.030</td>
<td>−0.046</td>
<td>0.190</td>
<td>−26.65</td>
<td>−29.07</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
<td>(0.166)</td>
<td>(0.485)</td>
<td>(20.47)</td>
<td>(68.35)</td>
</tr>
<tr>
<td>Population (ln)</td>
<td>0.123</td>
<td>0.179</td>
<td>5.163****</td>
<td>67.85</td>
<td>155.7</td>
</tr>
<tr>
<td></td>
<td>(0.089)</td>
<td>(0.159)</td>
<td>(1.066)</td>
<td>(42.15)</td>
<td>(826.5)</td>
</tr>
<tr>
<td>Democracy (0–21)</td>
<td>−0.031</td>
<td>−0.036</td>
<td>−0.058**</td>
<td>−3.078</td>
<td>−0.502</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.031)</td>
<td>(0.028)</td>
<td>(4.098)</td>
<td>(10.68)</td>
</tr>
<tr>
<td>Variable</td>
<td>Model 10</td>
<td>Model 11</td>
<td>Model 12</td>
<td>Model 13</td>
<td>Model 14</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Genocide</td>
<td>Genocide</td>
<td>Genocide</td>
<td>Battle-deaths</td>
<td>Battle-deaths</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>OLS means</td>
<td>fixed effects</td>
<td>OLS</td>
<td>OLS means</td>
</tr>
<tr>
<td>Conflict location</td>
<td>0.002</td>
<td>0.013</td>
<td>–</td>
<td>0.367</td>
<td>0.681</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.027)</td>
<td>–</td>
<td>(0.275)</td>
<td>(0.351)</td>
</tr>
<tr>
<td>Conflict size</td>
<td>0.075</td>
<td>0.124</td>
<td>–</td>
<td>3.008</td>
<td>3.573</td>
</tr>
<tr>
<td></td>
<td>(0.103)</td>
<td>(0.119)</td>
<td>–</td>
<td>(2.031)</td>
<td>(3.207)</td>
</tr>
<tr>
<td>Conflict density</td>
<td>0.0134</td>
<td>–0.054</td>
<td>0.051</td>
<td>0.466</td>
<td>0.336</td>
</tr>
<tr>
<td></td>
<td>(0.093)</td>
<td>(0.170)</td>
<td>(0.056)</td>
<td>(1.272)</td>
<td>(3.077)</td>
</tr>
<tr>
<td>Mountainous</td>
<td>−0.002</td>
<td>−0.001</td>
<td>0.007</td>
<td>0.008</td>
<td>−0.016</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.004)</td>
<td>(0.018)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>State strength</td>
<td>0.130**</td>
<td>0.163***</td>
<td>−0.011</td>
<td>−0.892</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.057)</td>
<td>(0.042)</td>
<td>(0.705)</td>
<td>(0.848)</td>
</tr>
<tr>
<td>Ethnic conflict</td>
<td>0.172*</td>
<td>0.166**</td>
<td>−0.712***</td>
<td>−0.003</td>
<td>0.807</td>
</tr>
<tr>
<td></td>
<td>(0.093)</td>
<td>(0.077)</td>
<td>(0.248)</td>
<td>(1.185)</td>
<td>(1.320)</td>
</tr>
<tr>
<td># of dyads</td>
<td>0.025</td>
<td>0.009</td>
<td>0.106</td>
<td>0.841</td>
<td>0.633</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.076)</td>
<td>(0.087)</td>
<td>(1.039)</td>
<td>(1.823)</td>
</tr>
<tr>
<td>War duration</td>
<td>−0.004</td>
<td>−0.009</td>
<td>0.002</td>
<td>−0.131**</td>
<td>−0.197*</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.009)</td>
<td>(0.064)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>Battle-deaths (k)</td>
<td>0.009</td>
<td>0.005</td>
<td>0.002</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.002)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Marginalized</td>
<td>−0.196</td>
<td>−0.252</td>
<td>0.134</td>
<td>1.320</td>
<td>1.246</td>
</tr>
<tr>
<td></td>
<td>(0.134)</td>
<td>(0.187)</td>
<td>(0.124)</td>
<td>(1.999)</td>
<td>(2.980)</td>
</tr>
<tr>
<td>Ethnic fract</td>
<td>0.283</td>
<td>0.295</td>
<td>Omitted</td>
<td>0.288</td>
<td>−0.249</td>
</tr>
<tr>
<td></td>
<td>(0.199)</td>
<td>(0.201)</td>
<td>–</td>
<td>(2.499)</td>
<td>(2.783)</td>
</tr>
<tr>
<td>Income per capita (ln)</td>
<td>−0.002</td>
<td>−0.013</td>
<td>−0.173</td>
<td>0.009</td>
<td>−0.414</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 10 Genocide OLS</th>
<th>Model 11 Genocide OLS means</th>
<th>Model 12 Genocide fixed effects</th>
<th>Model 13 Battle-deaths OLS</th>
<th>Model 14 Battle-deaths OLS means</th>
<th>Model 15 Battle-deaths fixed effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.043)</td>
<td>(0.184)</td>
<td>(0.422)</td>
<td>(0.585)</td>
<td>(2.906)</td>
</tr>
<tr>
<td>Population (ln)</td>
<td>−0.025</td>
<td>−0.013</td>
<td>−0.052</td>
<td>0.474</td>
<td>0.663</td>
<td>0.774</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.041)</td>
<td>(0.318)</td>
<td>(0.630)</td>
<td>(0.972)</td>
<td>(3.581)</td>
</tr>
<tr>
<td>Democracy (0–21)</td>
<td>−0.011**</td>
<td>−0.010</td>
<td>−0.005</td>
<td>−0.149*</td>
<td>−0.092</td>
<td>−0.101</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.008)</td>
<td>(0.003)</td>
<td>(0.075)</td>
<td>(0.119)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>Constant</td>
<td>−0.082</td>
<td>−0.233</td>
<td>2.106</td>
<td>−1.955</td>
<td>−6.265</td>
<td>−1.643</td>
</tr>
<tr>
<td></td>
<td>(0.467)</td>
<td>(0.473)</td>
<td>(3.971)</td>
<td>(6.738)</td>
<td>(10.21)</td>
<td>(45.91)</td>
</tr>
<tr>
<td>N</td>
<td>561</td>
<td>84</td>
<td>561</td>
<td>561</td>
<td>84</td>
<td>561</td>
</tr>
</tbody>
</table>

Notes: Standard errors in ().
One-tailed tests for three territorial variables; all others two-tailed.
*p < 0.10; **p < 0.05; ***p < 0.01; ****p < 0.001.
21% of the total. It is worth noting that Lima became the dominant insurgency locale only after the government targeted Ayacucho, Sendero’s area of origin, killing around 7000 residents.

Discussion of the control variables will be kept to a minimum since the degree of territorial contestation is going to be partly determined by many of the controls; hence, the coefficients may be biased estimates. What can be said is that most of the variables flagged by the repression literature as important underperform relative to the extant literature. Battle-Deaths is consistently significant which suggests that higher levels of combat violence and civilian killings are likely to be found together in the same conflict years, although the severity of the two appear to be weakly related.

In Models 4–6, the dependent variable is One-Sided Killing of Civilians by the Government. Whereas the previous measure ends in lethal violence, this measure begins with the killing of noncombatants (i.e. positive values = civilian deaths). Conflict Location is negatively correlated with Government perpetrated civilian killings, but falls short of reaching statistical significance. Conflict Size (Models 4 and 5) is statistically significant in both models that include it and the effects are substantive. In the pooled OLS estimation, a one standard deviation increase in the size of the conflict zone would translate into 90 additional civilian deaths. The fact that Density is not significant in Models 4 and 5 suggests that government killings of civilians are driven more by the amount of territory that the government is trying to defend. The scatterplot in Figure 1 suggests that the relationship between Conflict Density and civilian killings may be nonmonotonic and that the government kills the most civilians when 30–40% of insurgency attacks take place in the dominant insurgency locale. Put differently, the government appears to kill the most civilians not where they lack any safe-haven at all.

Models 7–9 examine One-sided Killing of Civilians by the rebel group for comparison. As with both of the previous measures of repression, Conflict Size is positively and significantly correlated with the killing of civilians by rebel groups. In Models 7–9, Conflict Density is a negative and significant predictor of rebel perpetrated civilian killings. The coefficient for Model 7 suggests that a one standard deviation increase in the density of an insurgency (SD = 0.270) would translate into 50 fewer civilian deaths. As seen in Figure 1, which contains a scatterplot of Conflict Density and number of civilians killed per year by the rebel group, there is a remarkably sharp drop in civilian deaths around the point at which the dominant insurgency locale houses over 50% of all insurgency attacks in the year. While the absolute size of the civil war best predicts civilian killings by the government, rebel perpetrated civilian killings are far greater when an insurgency lacks a clear epicenter and the rebel franchise has become decentralized. Prior studies on rebel perpetrated civilian killings (Hultman 2012) found fewer civilian killings in territorial conflicts. The finding here suggests that one of the ways in which the nature of the dispute effects civilian killings by the rebels is by impacting the amount of territory that the rebels are contesting.

Models 10–12 examine genocide and the results appear to support Kalyvas’ assertion that genocidal violence is different from everyday forms of repressive violence. None of the variables measuring the degree of territorial contestation are statistically significant for genocide. State Strength, in the government’s favor, is positively and significantly correlated with genocidal violence, as is the presence of an Ethnic divide between the combatants. These findings are consistent with Valentino, Huth, and Balch-Lindsey (2004) who expect mass killings to be more likely in ethnic disputes where the government has the upper hand militarily. Valentino (2000) argues that the risk of mass killings is most likely ‘the greater the physical capabilities for mass killing possessed by the perpetrators’ (2000, 54) and ‘the less capabilities for retaliation the perpetrators believe that victims possess’ (2000, 51).
In Models 13–15, the dependent variable is Battle-Deaths, which presumably should also be driven by different factors from repressive violence. Across all three specifications, none of the territorial variables are significant. In Models 13 and 14, we see that combat intensity tends to decline the longer a civil war lasts. In Model 15, higher relative state strength is associated with more battle-deaths which suggests that changes in relative strength and casualties are strongly correlated within cases. Overall, the results show that repressive violence and combat violence are predicted by different conditions. This is consistent with many case studies on repressive violence by governments that generally lend support to a decentralized model where the bulk of day-to-day repression is carried out by police and security agents at local levels while the national military assumes more conventional combat roles. In their survey of torture victims in Punjab, Laws and Iacopino (2002) found that their victims were detained and tortured in 84 different police stations across Punjab by local police.

CONCLUSION

The primary motivation in this paper was to demonstrate a basic connection between repressive violence against noncombatants in civil war and the amount of territory being contested by the rebels. Drawing from Kalyvas, it was theorized that larger amounts of contested territory would produce greater levels of repressive violence. The study’s contribution is the operationalization of this idea using geographic measures of the conflict and the spatial concentration of the insurgency. Overall, the results suggest that conflict
geography is a significant piece of the puzzle regarding variation in repressive violence against civilians in civil war. Competing conceptual groupings emphasizing state capacity, conflict severity, or societal attributes received less support than those related to conflict geography.

There are several important correlates of the current study that could not be explored in sufficient depth and should provide fruitful avenues for future research on the geography of repressive violence. Foremost, the current analysis ignores population settlement patterns. This omission is not the result of unpromising results but the high degree of complexity of the task. The interaction of ethnic group location, with group population density, with conflict location, with the density of insurgency violence, deserves detailed attention.

The current analysis also ignores the evolution of different patterns of territorial contestation and repressive violence over time. We know that the location and size of insurgencies are endogenously related to rebel objectives and capabilities (Buhaug and Gates 2002; Buhaug 2007). Conflict geometry might also be related to repressive behavior in a bi-directional process. Anecdotal evidence suggests that harsh repressive violence by governments targeted against high-density insurgencies (early on) leads to the dispersion or decentralization of the insurgency. This in turn leads to the spatial dispersion of state repression as authorities in new areas perceive incoming displaced persons as efforts to spread the insurgency to their town. This is especially the case for displaced young males bearing the same ethnicity, class, and area of origin as a typical insurgent. If governments naturally repress geographic areas with the highest density of insurgent activity, and insurgents naturally navigate from highly repressed areas to areas with less repression, the resulting pattern will be the preservation of high-density insurgencies only in low-repression environments.

ACKNOWLEDGMENTS

J. M. Quinn is a research assistant professor at the Kroc Institute for International Peace Studies at the University of Notre Dame. Thanks to Dave Mason and Madhav Joshi for comments on earlier drafts. Also thanks to the incredible reviewers at DPE whose comments and suggestions greatly improved the paper.

References

